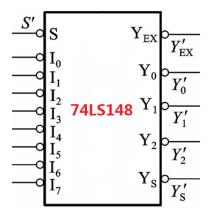
编码器和译码器实验报告

1. 实验目的

- 1. 1. 掌握用逻辑门实现编码器的方法.
- 1. 2. 掌握中规模集成电路编码器和译码器的工作原理以及逻辑功能.
- 1. 3. 掌握74LS138用作数据分配器的方法.
- 1.4. 熟悉编码器和译码器的级联方法.
- 1. 5. 能够利用译码器进行组合逻辑电路设计.


2. 实验原理

2. 1. 编码器(Encoder)

在数字系统中,常常需要将某一信息(输入)变换为某一特定的代码(输出).把二进制码按一 定的规律编排,例如8421码、格雷码等,使每组代码具有一特定的含义(代表某个数或控制信 号) 称为编码.

具有编码功能的逻辑电路称为编码器. 它的逻辑功能是将输入的每一个高、低电平信号编成 一个对应的二进制代码.

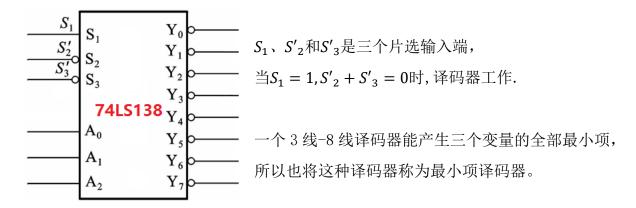
2.1.1. 8线--3线 优先编码器 74LS148

S'为选通输入端, S' = 0, 编码器才能正常工作.

 Y_{s}' 为选通输出端, $Y_{s}' = 0$, 表示电路工作, 无编码输入.

 Y_{EX} '为扩展端, Y_{EX} ' = 0,表示电路工作,有编码输入.

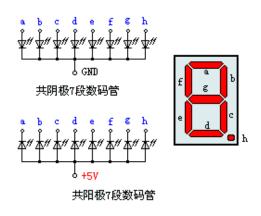
优先编码器74LS148功能表


			输		λ					输		出	
S'	I o	$I_1^{'}$	$\boldsymbol{I}_{2}^{'}$	$\boldsymbol{I}_{3}^{'}$	$I_4^{'}$	$\boldsymbol{I}_{5}^{'}$	I_6	$\boldsymbol{I}_{7}^{'}$	$\boldsymbol{Y}_{2}^{'}$	Y_1	$Y_{\rm o}$	$Y_{S}^{'}$	$Y_{EX}^{'}$
1	Х	Х	Х	Х	Х	Х	Х	Х	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1
0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	0	0	1	0
0	Х	Χ	Χ	Χ	Χ	Χ	0	1	0	0	1	1	0
0	Χ	Χ	Χ	Χ	Χ	0	1	1	0	1	0	1	0
0	Χ	Χ	Χ	Χ	0	1	1	1	0	1	1	1	0
0	Χ	Χ	Χ	0	1	1	1	1	1	0	0	1	0
0	Χ	Χ	0	1	1	1	1	1	1	0	1	1	0
0	Х	0	1	1	1	1	1	1	1	1	0	1	0
0	0	1	1	1	1	1	1	1	1	1	1	1	0

2.2. 译码器(Decoder)

译码是编码的逆过程.译码器将每个二进制代码赋予的特定含义"翻译"过来,转换成相应的信息符号(输出信号).

具有译码功能的逻辑电路被称为**译码器**,它的逻辑功能是将每个输入的二进制代码译成对应的输出高、低电平信号或另一个代码.


2.2.1. 二进制译码器74LS138

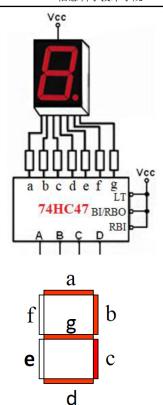
3线-8线译码器74LS138功能表

	输		λ				输		出				
S_1	$S_2' + S_3'$	A_2	A_1	A_0	$Y_0^{'}$	$Y_{1}^{'}$	$Y_{2}^{'}$	$Y_{3}^{'}$	$Y_{4}^{'}$	$Y_5^{'}$	$Y_{6}^{'}$	$Y_7^{'}$	
0	Х	Х	Χ	Χ	1	1	1	1	1	1	1	1	
Χ	1	Χ	Χ	Χ	1	1	1	1	1	1	1	1	
1	0	0	0	0	0	1	1	1	1	1	1	1	
1	0	0	0	1	1	0	1	1	1	1	1	1	
1	0	0	1	0	1	1	0	1	1	1	1	1	
1	0	0	1	1	1	1	1	0	1	1	1	1	
1	0	1	0	0	1	1	1	1	0	1	1	1	
1	0	1	0	1	1	1	1	1	1	0	1	1	
1	0	1	1	0	1	1	1	1	1	1	0	1	
1	0	1	1	1	1	1	1	1	1	1	1	0	

2.2.2. 显示译码器

能直接驱动数字显示器或能同显示器配合使用的 译码器称为**显示译码器**。

常用的显示译码器能驱动七段字符显示器。


信息科学技术学院

PB23061234 房杰

PB23061223 胡泽宇

1号台(周三晚1组)

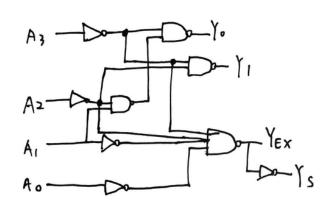
2025年3月19日

			741	HC47 均頁	它衣		
序号		输	λ		输出	显示 字形	
/, 3	LT'	RBI'	D C B A	BI'/RBO'	abcdefg		
0	1	1	0 0 0 0	1	0 0 0 0 0 0 1	0.	
1 2	1 1	×	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	ا ا	
3	1	X	0 0 1 1	1	0 0 0 0 1 1 0	3	
4	1	X	0 1 0 0	1	1 0 0 1 1 0 0	ט" נ	
5 6	1 1	×	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$\begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	ř	
7	1	×	0 1 1 0	1	$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$	7	
8	1	×	1 0 0 0	1	0 0 0 0 0 0 0	~ ~ ~ ~ ~ ~ ~ ~ ~	
9	1	X	1 0 0 1	1	0 0 0 1 1 0 0	٩	
10	1	×	1 0 1 0	1	1 1 1 0 0 1 0	С	
11 12	1 1	×	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ם ם	
13	1	X	1 1 0 0	1	0 1 1 0 1 0 0		
14	1	X	1 1 1 0	1	1 1 1 0 0 0 0	יירוי	
15	1	X	1 1 1 1	1	1111111	消隐	
BI'	×	×	XXXX	0	1 1 1 1 1 1 1	消隐	
RBI' LT'	1 0	0 ×	$\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ \times \times \times \times \end{array}$	0 1	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	消隐 8	
LI	U		// // // //	1		כ	

3. 实验内容

3.1. 用逻辑门设计一个 4 线--2 线的优先编码器

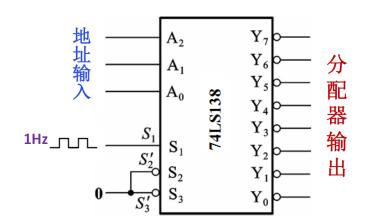
用小规模逻辑门芯片设计一个 4 线-2 线的优先编码器,要求**输入端高电平有效**。将输入端接逻辑电平开关,输出端 $Y_0 \sim Y_1$ 接 LED 逻辑电平指示,拨动开关,根据发光二极管显示的变化,逐项验证 4 线-2 线编码器的功能。(要求:用与非门、反相器)


A_0	A_1	A_2	A_3	<i>Y</i> ₁	Y_0	Y_{EX}	Y_S
0	0	0	0	0	0	0	1
1	0	0	0	0	0	1	0
×	1	0	0	0	1	1	0
×	×	1	0	1	0	1	0
X	×	×	1	1	1	1	0

$$Y_0 = (A_3'(A_2'A_1)')'.$$

$$Y_1 = (A_2' A_3')'.$$

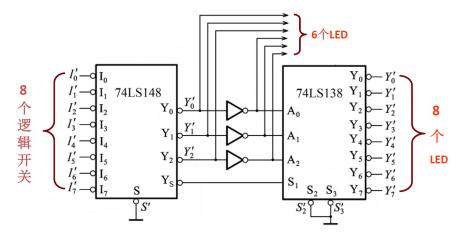
$$Y_{EX} = (A_0' A_1' A_2' A_3')'.$$


$$Y_S = Y_{EX}'$$
.

3.2. 观察分配器输出

将74LS138用作数据分配器,将1Hz连续脉冲信号加到电路的**控制**输入端,输出接发光二极管,改变输入地址码 A_2 、 A_1 、 A_0 的值,观察实验现象,记录实验结果。

若要求分配器的输出信号与输入脉冲信号**同相**,在**不增加逻辑门**的情况下,电路应如何改接?



	输	·入		输出												
S_1	A_1	A_1	A_0	Y_0'	Y1'	Y_2'	Y3'	Y4'	Y ₅ '	Y ₆ '	Y_7'					
0	X	×	×	1	1	1	1	1	1	1	1					
×	X	×	×	1	1	1	1	1	1	1	1					
	0	0	0	7	1	1	1	1	1	1	1					
7	0	0	1	1	7	1	1	1	1	1	1					
	0	1	0	1	1	7	1	1	1	1	1					
7	0	1	1	1	1	1		1	1	1	1					
	1	0	0	1	1	1	1		1	1	1					
	1	0	1	1	1	1	1	1	7	1	1					
	1	1	0	1	1	1	1	1	1	7	1					
	1	1	1	1	1	1	1	1	1	1	7					

若需要分配器的输出信号与输入脉冲信号同相,

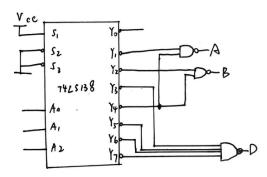
只需要将脉冲信号接入 S_2 '与 S_3 ', S_1 接电源即可.

3.3. 验证编码器74LS148和译码器74LS138的逻辑功能

根据74LS148和74LS138的输出状态,填写下表,并分析结果。

	74 <i>LS</i> 148(编码器)										74 <i>LS</i> 138(译码器)										
$I_0{'}$	$I_1{'}$	$I_2{'}$	I_3	$I_4{}'$	I_5	$I_6{'}$	I_7	Y2'	Y_1'	Y_0'	A_2	A_1	A_0	Y_0'	Y_1'	Y_2'	Y3'	Y_4'	Y_5	Y_6'	Y_7
1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1
×	0	1	1	1	1	1	1	1	1	0	0	0	1	1	0	1	1	1	1	1	1
×	×	0	1	1	1	1	1	1	0	1	0	1	0	1	1	0	1	1	1	1	1
×	×	×	0	1	1	1	1	1	0	0	0	1	1	1	1	1	0	1	1	1	1
×	×	×	×	0	1	1	1	0	1	1	1	0	0	1	1	1	1	0	1	1	1
×	×	×	×	×	0	1	1	1	0	1	0	1	0	1	1	1	1	1	0	1	1
×	×	×	×	×	×	0	1	1	1	0	0	0	1	1	1	1	1	1	1	0	1
×	×	×	X	×	X	×	0	1	1	1	0	0	0	1	1	1	1	1	1	1	0

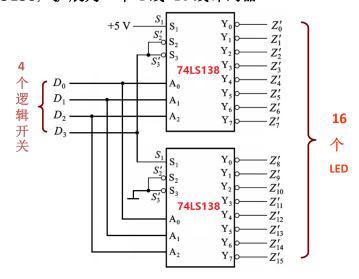
分析: 74LS148是 8 线-3 线优先编码器,优先级为 $I'_0 > I'_1 > \cdots > I_7'$,并将输入信号转换为 从 000 到 111 的反向输出,编码器输出结果反向后作为74LS138的输入。


3.4. 设计一个具有 3 路报警信号的报警装置:

当第一路有报警信号时,数码管显示 1;当第二路有报警信号时,数码管显示 2;当第三路有报警信号时,数码管显示 3;当有两路或两路以上有报警信号时,数码管显示 8;当无报警信号时,数码管显示 0. (要求:用74*LS*138和**逻辑门**等器件设计该电路)

$$A = (Y_1'Y_4')'.$$

$$B = (Y_2'Y_4')'.$$


$$D = (Y_3'Y_5'Y_6'Y_7')'.$$

PB23061223 胡泽宇 1号台

1号台(周三晚1组) 2025年3月19日

3.5. 用两片74LS138, 扩展为一个 4 线-16 线译码器

按上图连接电路, 根据实验结果, 填写下表, 并分析电路的工作原理。

D_3	D_2	D_1	D_0	$Z_0{'}$	Z_1'	Z_2'	Z_3'	${Z_4}'$	$Z_5{'}$	$Z_6{'}$	Z_7	$Z_8{}'$	$Z_9{'}$	$Z_{10}{}'$	$Z_{11}{}'$	Z_{12}'	$Z_{13}{}'$	$Z_{14}{}^{\prime}$	Z_{15}'
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
1	0	1	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

分析:

用两片 74LS138 扩展为 4 线 - 16 线译码器时,将低位地址并联作为共同输入,高位地址控制两片的使能端,使一片负责低 8 位译码,另一片负责高 8 位译码,从而实现 4 位地址到 16 个输出的译码功能。

4. 思考题

4.1. 如何判断一个数码管的好坏?

可使用万用表电阻档,分别测量数码管各引脚间电阻,若有短路、断路或阻值异常,说明数码管损坏;

也可给数码管通电,观察各段能否正常点亮,若有缺段、乱亮等情况,则数码管有问题。

4.2. 共阴极和共阳极数字显示器有什么区别?能否用74HC74直接驱动共阴极数字显示器?

共阴极数码管的阴极是公共端,需将阴极接地,阳极接高电平时相应段点亮;共阳极数码管的阳极是公共端,需将阳极接高电平,阴极接低电平时相应段点亮。

不能用74*HC*74直接驱动共阴极数字显示器。74*HC*74是双 D 触发器,主要用于存储和处理数字信号,而非用于驱动数码管,它的驱动能力和输出信号类型不适合直接驱动共阴极数字显示器。

4.3. 为什么用二进制译码器可以设计任意的组合逻辑电路?

因为二进制译码器能将输入的二进制代码译成对应的输出信号,使能端有效时,对 于每一组输入代码,只有一个输出引脚为有效电平,其余为无效电平。利用这一特性, 通过对译码器的输出进行适当组合和处理,可实现各种逻辑功能。

4.4. 总结用集成电路进行功能扩展的方法。

通常有级联法,将多个相同或不同的集成电路按一定方式连接,以增加功能或提高性能,如多个计数器级联实现更大计数范围;

还有利用使能端、控制端等进行功能扩展,通过对这些引脚的控制,使集成电路在 不同条件下实现不同功能。

另外,还可将不同功能的集成电路组合使用,实现更复杂的系统功能。