实验5 排序算法的计算复杂度

实验时间

3课时

实验目的

  1. 掌握各种排序算法。
  2. 学习测量程序运行时间的方法。

问题描述

在课程学习中,我们已经知道不同的排序算法具有不同的时间复杂度,那么在具体应用中,各种排序算法的运行时间究竟相差多少?通过这个实验,对程序运行时间进行实际的测量,可以直观感受到时间复杂度与问题规模的关系。

实验内容

本实验要求编程实现至少5种排序算法(快速、堆、归并必做,其他选做),并在不同N值(如10000、100000、1000000)的条件下多次运行程序计算平均运行时间。

实现提示

为了公平起见,我们应该使用同一个无序序列作为输入,来测量不同排序算法的运行时间。那么无序序列如何得到?一种方法是,先生成一个长度为N的有序序列,再将该序列随机重排(random shuffle),从而得到一个长度为N的无序序列。

测量程序的运行时间,我们可以使用C/C++语言提供的计时器。需要注意的是,该计时器的灵敏度比较低,在Windows系统中,一般只有当两组运行时间相差0.1秒以上时,才能认为这两组时间是有差别的。

原代码

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <cstdio>
#include <iostream>

using namespace std; // c++常规写法

typedef int ElemType;

typedef struct {
    ElemType *r;
    int len;
} SqTable;//顺序表

void InitList(SqTable &L, int len) {
    // 0号单元不用
    L.r = (ElemType*)malloc((len+1)*sizeof(ElemType));
    L.len = len;
}//初始化顺序表

void CopyList(SqTable L, SqTable &newL) {
    newL.r = (ElemType*)malloc((L.len+1)*sizeof(ElemType));
    newL.len = L.len;
    memcpy(newL.r, L.r, (L.len+1)*sizeof(ElemType));
}//复制顺序表

// 求一个整数的p次方
int intpow(int n, unsigned int p) {
    int res = 1;
    for (unsigned int i=0; i<p; ++i)
        res *= n;
    return res;
}

// 生成一个随机整数,其取值范围是[0, bound]
int randb(int bound) {
    int r = 0;
    unsigned int power = 0;
    do {
        r *= RAND_MAX;
        r += rand(); ++power;
    } while (intpow(RAND_MAX, power) < bound);
    return r % (bound+1);
}

// 随机打乱一个数组
void RandomShuffleList(SqTable L) {
    ElemType* array = L.r + 1; int n = L.len;
    for (int i=n-1; i>0; --i) {
        int j = randb(i); // 0<=j<=i
        ElemType tmp = array[i]; array[i] = array[j]; array[j] = tmp;
    }
}

//1.快速排序算法
void QuickSort(SqTable &L, int low, int high) {
    if (low < high) {
        int i = low, j = high;
        ElemType pivot = L.r[low];
        while (i < j) {
            while (i < j && L.r[j] >= pivot) --j;
            if (i < j) L.r[i++] = L.r[j];
            while (i < j && L.r[i] <= pivot) ++i;
            if (i < j) L.r[j--] = L.r[i];
        }
        L.r[i] = pivot;
        QuickSort(L, low, i - 1);
        QuickSort(L, i + 1, high);
    }
}
void Quick(SqTable &L) {
    QuickSort(L, 1, L.len);
}

//2.堆排序算法
void HeapAdjust(SqTable &L, int s, int m) {
    ElemType tmp = L.r[s];
    for (int j = 2 * s; j <= m; j *= 2) {
        if (j < m && L.r[j] < L.r[j + 1]) ++j;
        if (tmp >= L.r[j]) break;
        L.r[s] = L.r[j];
        s = j;
    }
    L.r[s] = tmp;
}
void Heap(SqTable &L) {
    for (int i = L.len / 2; i > 0; --i) {
        HeapAdjust(L, i, L.len);
    }
    for (int i = L.len; i > 1; --i) {
        ElemType tmp = L.r[1]; L.r[1] = L.r[i]; L.r[i] = tmp;
        HeapAdjust(L, 1, i - 1);
    }
}

//3.归并排序算法
void Merge(SqTable &L, int low, int mid, int high) {
    ElemType* tmp = (ElemType*)malloc((high-low+1)*sizeof(ElemType));
    int i = low, j = mid+1, k = 0;
    while (i <= mid && j <= high) {
        if (L.r[i] <= L.r[j]) tmp[k++] = L.r[i++];
        else tmp[k++] = L.r[j++];
    }
    while (i <= mid) tmp[k++] = L.r[i++];
    while (j <= high) tmp[k++] = L.r[j++];
    for (k=0; k<high-low+1; ++k) L.r[low+k] = tmp[k];
    free(tmp);
}
void MergeSort(SqTable &L, int low, int high) {
    if (low < high) {
        int mid = (low + high) / 2;
        MergeSort(L, low, mid);
        MergeSort(L, mid + 1, high);
        Merge(L, low, mid, high);
    }
}

//4.冒泡排序
void Bubble(SqTable &L){
    bool change = true;
    for (int i = 1; i < L.len && change; ++i){
        change = false;
        for (int j = 1; j <= L.len - i; ++j){
            if (L.r[j] > L.r[j+1]){
                ElemType tmp = L.r[j];
                L.r[j] = L.r[j+1];
                L.r[j+1] = tmp;
                change = true;
            }
        }
    }
}

//5.希尔排序
void Shell(SqTable &L){
    for (int gap = L.len/2; gap > 0; gap /= 2){
        for (int i = gap + 1; i <= L.len; ++i){
            if (L.r[i] < L.r[i-gap]){
                ElemType tmp = L.r[i];
                int j = i - gap;
                while (j > 0 && L.r[j] > tmp){
                    L.r[j+gap] = L.r[j];
                    j -= gap;
                }
                L.r[j+gap] = tmp;
            }
        }
    }
}

// 主函数
int main() {
    int N = 0;
    cout<<"注意:N=10000的时候冒泡会很久,取值需谨慎\nN=?"<<endl;
    cin>>N;
    SqTable L;
    InitList(L, N);
    for (int i=1; i<=N; ++i) L.r[i] = i;
    RandomShuffleList(L);
    cout<<"\n随机数组生成成功"<<endl;
    clock_t begin, end;

    // =======================排序算法1:快速排序(Quick Sort)
    cout<<"\n快速排序计时中..."<<endl;
    SqTable L1;
    CopyList(L, L1);
    begin = clock(); // 计时器开始
    Quick(L1);
    end = clock(); // 计时器结束
    printf("快速排序用时: %g s\n", (float)(end-begin) / CLOCKS_PER_SEC);
    free(L1.r);
    cout<<"快速排序计时结束。"<<endl;

    // =======================排序算法2:堆排序(Heap Sort)
    cout<<"\n堆排序计时中..."<<endl;
    SqTable L2;
    CopyList(L, L2);
    begin = clock(); // 计时器开始
    Heap(L2);
    end = clock(); // 计时器结束
    printf("堆排序用时: %g s\n", (float)(end-begin) / CLOCKS_PER_SEC);
    free(L2.r);
    cout<<"堆排序计时结束。"<<endl;

    // =======================排序算法3:归并排序(Merge Sort)
    cout<<"\n归并排序计时中..."<<endl;
    SqTable L3;
    CopyList(L, L3);
    begin = clock(); // 计时器开始
    MergeSort(L3, 1, N);
    end = clock(); // 计时器结束
    printf("归并排序用时: %g s\n", (float)(end-begin) / CLOCKS_PER_SEC);
    free(L3.r);
    cout<<"归并排序计时结束。"<<endl;

    // =======================排序算法4:冒泡排序
    cout<<"\n冒泡排序计时中..."<<endl;
    SqTable L4;
    CopyList(L, L4);
    begin = clock(); // 计时器开始
    Bubble(L4);
    end = clock(); // 计时器结束
    printf("冒泡排序用时: %g s\n", (float)(end-begin) / CLOCKS_PER_SEC);
    free(L4.r);
    cout<<"冒泡排序计时结束。"<<endl;

    // =======================排序算法5:希尔排序
    cout<<"\n希尔排序计时中..."<<endl;
    SqTable L5;
    CopyList(L, L5);
    begin = clock(); // 计时器开始
    Shell(L5);
    end = clock(); // 计时器结束
    printf("希尔排序用时: %g s\n", (float)(end-begin) / CLOCKS_PER_SEC);
    free(L5.r);
    cout<<"希尔排序计时结束。"<<endl;

    free(L.r);
    return 0;
}

原代码下载

使用 Hugo 构建